

INTRODUCTION OF EUV IN IMEC'S DEVICE PROGRAMS

MONIQUE ERCKEN, TOM VANDEWEYER, JANKO VERSLUIJS, VINCENT TRUFFERT AND GUSTAF WINROTH

OUTLINE

Introduction

NIO Logic

- Gate
- ► Intermediate Metal2
- ► Via0

Conclusions

Acknowledgements

OUTLINE

Introduction

N10 Logic

- ► Gate
- ► Intermediate Metal2
- ► Via0

Conclusions

Acknowledgements

NIO LOGIC ARCHITECTURE

Dual layer Intermediate Metal (IM)

Layer	V ertical		Horizontal	
	CD (nm)	Pitch (nm)	CD (nm)	Pitch (nm)
Active/Fin	-	-	10	45
Gate	20	62	-	-
IMI	22	62	-	-
Gate Open	62	124	53	93
IM2(*)	20/30	62	30/40	80
Via0	40	62	23	45
Metall	40	62	23	45

(*) Bottom/top CD

Layer	# masks	193i	# masks	EUV (0.25NA)
Fin/Active				
Gate				
IMI				
GOP				
IM2				
Via0				
Metall				

Layer	# masks	193i	# masks	EUV (0.25NA)	
Fin/Active	3	√			
Gate	3	✓			
IMI	2 or 3	✓			
GOP	I or 2	√			
IM2	≥ 3	√			
Via0	2 or 3	√			
Metall	2 or 3	✓			
			J		

Ok with multiple patterning!

Layer	# masks	193i	# masks	EUV (0.25NA)
Fin/Active	3	\checkmark	3	No clear advantage for EUV
Gate	3	√	I or 2	Allows multiple gate lengths
IMI	2 or 3	✓	I or 2	No clear advantage for EUV
GOP	I or 2	✓	I	No clear advantage for EUV
IM2	≥ 3	✓	I or 2	Easier imaging and fewer masks
Via0	2 or 3	✓	I	Easier imaging and fewer masks
Metall	2 or 3	✓	2	Easier imaging

Layer	# masks	193i	# masks	EUV (0.25NA)
Fin/Active	3	\checkmark	3	No clear advantage for EUV
Gate	3	✓	I or 2	Allows multiple gate lengths —
IMI	2 or 3	✓	I or 2	No clear advantage for EUV
GOP	I or 2	✓	I	No clear advantage for EUV
IM2	≥ 3	✓	I or 2	Easier imaging and fewer masks
Via0	2 or 3	✓	l I	Easier imaging and fewer masks 🛑
Metall	2 or 3	√	2	Easier imaging

> Focus in this presentation will be on Gate, IM2 and Via0

OUTLINE

Introduction

NIO Logic

- ► Gate
- ► Intermediate Metal2 (IM2)
- ► Via0

Conclusions

Acknowledgements

CD CONTROLTHROUGH BATCH

Average CD over batch = 29.2nm Average intra-wafer 3sigma = 0.6nm 3sigma over batch = 0.7nm

CD CONTROL OVER TIME

13 lots exposed @ 14mJ.cm⁻² / 0um 187 wafers in total all wafers measured

Weighted average CD = 29.3nm ➤ 0.8% variation over 6 months

OVERLAY CONTROL MATCHING EUV TO 193i

markers at fin level are segmented (90nm pitch)

Edge dies excluded,
I point per field for
interfield corrections,
5 points per field on 5
dies for intrafield
corrections!

Applying 10-parameter model on measured overlay, brings residuals down to 6-7nm on product wafer

Gate

GATE STACK

62nm pitch

- ► 60nm resist
- 20nm under-layer
- SiOC
- α-Si
- SiOC
- α-C
- ► SiO2 + SiN
- α-Si
- gate oxide
- ► Fins

HM patterning + Cut

Gate patterning

Gate

GATE PATTERNING

GateLine Litho (EUV)

e Litho (EUV)

<CD> ≈ 30nm <LWR 3 σ > ≈ 5.4nm GateLine Etch in HM

GateCut Litho (193i)

<CD> ≈ 20nm <LWR 3σ> ≈ 4.1nm

Full Etch

aspect ratio ~ 7.5

PROFILE CONTROL AFTER FULL ETCH

Remaining HM

Slight slope during softlanding step

Final fine-tuning of etch recipe currently ongoing

INTERMEDIATE METAL LAYERS

Gate distance is small
Put protective Nitride cap over Gate to avoid short

Locally remove this nitride cap where Gate needs to be contacted: "Gate-Open" (= extra patterning step)

- IMI: contact Active (Fin) same level as Gate
- IM2: contact Gate & bring Active contacts one level up one level above Gate
- GOP: protect Gate from shorting to IM2

etch

LITHO AND ETCH ON SMALL BATCH

12nm UL + 60nm resist 62nm pitch 0.25NA / 0.81σ 12 wafers 23 dies per wafer

Target	MOSFET Trench M ± 3σ (nm)	SRAM Trench M ± 3σ (nm)
Litho 30nm	31.5 ± 1.6	34.1 ± 5.2
Etch T30/B20nm	27.7 ± 3.1	30.0 ± 4.5

- > Acceptable profile performance after etch achieved
- > CDU improvement ongoing

28.9 nm

XSEM view

OVERLAY CONTROL MATCHING EUV TO EUV

Applying 10-parameter model on measured overlay, brings residuals down to 3-4nm on product wafer

INTRO OF <u>SELF-ALIGNED</u> PATTERNING IN DD MODULE (VIA0/MI)

Partial Trench First approach

CD CONTROLTHROUGH BATCH

Average intra-wafer 3sigma = 1.2nm

PROOF-OF-CONCEPT

- Self-aligned etch successfully applied
- Within wafer CDU improvement ongoing

Top is not damaged!

OUTLINE

Introduction

N10 Logic

- ► Gate
- ► Intermediate Metal2
- ► Via0

Conclusions

Acknowledgements

CONCLUSION

Stable litho processing shown through batch and over time

Overlay performance on product wafers meets tool target specifications

EUV litho integrated in N10 Logic Gate, IM2 and Via0 patterning

- Acceptable profile performance achieved after full patterning
- LER/LWR roughness control needs further attention

THANKS TO

all contributors from

- Litho
- Etch
- Thin film deposition
- ► CMP
- Design & Mask Support
- Respective integration teams
- Material suppliers
- Tool suppliers
- EDA supplier
- Maskshop supplier
- Pilot line support and operations

